On the applications of Gibbs random field in image processing: from segmentation to enhancement
نویسندگان
چکیده
The Gibbs random field (GRF) has been proved to be a simple and practical way of parameterizing the Markov random field (MRF) which has been widely used to model an image or image related process in many image processing applications. In particular, Gibbs random field can be employed to construct an efficient Bayesian estimation that often yields optimal results. In this paper, we describe how the Gibbs random field can be efficiently incorporated into optimization processes in several representative applications, ranging from image segmentation to image enhancement. One example is the segmentation of CT volumetric image sequence in which the GRF has been incorporated into K-means clustering to enforce the neighborhood constraints. Another example is the artifact removal in DCT based low bit rate image compression in which GRF has been used to design an enhancement algorithm that smooths the artificial block boundary as well as ringing pattern while still preserve the image details. The third example is an elegant integration of GRF into a wavelet subband coding of video signals in which the high-frequency bands are segmented with spatial constraints specified by a GRF while the subsequent enhancement of the decompressed images is accomplished with the smoothing function specified by another corresponding GRF. With these diverse examples, we are able to demonstrate that various features of images can all be properly characterized by a Gibbs random field. The specific form of the Gibbs random field can be selected according to the characteristics of an individual application. We believe that Gibbs random field is a powerful tool to exploit the spatial dependency in various images, and is applicable to many other image processing tasks.
منابع مشابه
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملOn the application of Gibbs random field in image processing: from segmentation to enhancement
The Gibbs random field (GRF) has proved to be a simple and practical way of parameterizing the Markov random field, which has been widely used to model an image or image-related process in many image processing applications. In particular, the GRF can be employed to construct an efficient Bayesian estimation that often yields optimal results. We describe how the GRF can be efficiently incorpora...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملImage Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing
Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...
متن کامل